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Outline
• Background and Objectives
• Environmental Chamber Experiments – Ozone Impacts
• Environmental Chamber Experiments – PM Impacts
• Exploratory Glycol Availability Experiments
• Estimation of Hydrocarbon Solvent Reactivities
• Direct Reactivity Measurement
• Summary and Conclusions
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Recent UCR Coatings Reactivity Projects
Evaluation of Atmospheric Impacts of Selected Coatings VOCs
• CARB Contract 00-333

• Objective: Reduce uncertainties in estimations of ozone impacts
of coatings VOCs

• Final report at http://www.cert.ucr.edu/~carter/coatings

Environmental Chamber Studies of VOC Species in
Architectural Coatings and Mobile Source Emissions
• SCAQMD Contract No. 03468

• Relevant Objectives:
• Evaluate O3 impacts of selected water-based coatings VOCs
• Determine PM impacts for Coating VOCs studied for CARB
• Evaluate use of chamber for availability studies

• Final report in preparation
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Components of Coatings Projects
• Environmental chamber studies

• Six complex hydrocarbon solvents and four water-based
coatings VOC compounds chosen for study

• UCR EPA chamber employed
• Chamber results used to evaluate ozone reactivity

predictions of the SAPRC-99 mechanism
• PM measurement results used to derive qualitative

estimates of relative PM impacts of solvents studied
• Exploratory studies of effects of aerosol and humidity on

glycol availability

• Development and evaluation of general procedures to estimate
reactivities of complex hydrocarbon solvents

• Further development and evaluation of direct reactivity
measurement methods
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Measurement or Calculation
of Ozone Reactivities of VOCs

• VOC Reactivities measured in chamber experiments are not
exactly the same as VOC reactivities in the atmosphere.
• Impractical to duplicate all relevant conditions
• Chamber experiments have wall effects, static conditions,

higher levels of test VOCs, etc.

• Atmospheric Ozone impacts of VOCs must be calculated using
computer airshed models, given:
• Models for airshed conditions
• Chemical mechanism for VOC’s Atmospheric Reactions

• BUT mechanisms have uncertainties. reactivity calculations can
be no more reliable than the chemical mechanism used.

• Therefore, the purpose of chamber experiments is to test
the ability of the mechanisms to predict reactivity in models
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Diagram of UCR EPA Chamber
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Photographs of Chamber and Lights
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Incremental Reactivity Experiments

• Objective is to determine effects of VOC’s reactions in chemical
environments representing a range of atmospheric conditions.

• Approach is to conduct two simultaneous experiments in the
dual chamber
• Base Case Experiment: Irradiate surrogate ROG – NOx

mixture simulating an ambient chemical environment
• Test Experiment: Same as base case experiment except

that a test compound or solvent added

• Effect of added VOC on O3, radicals, etc, provides a means to
test model predictions reactivities of VOCs under similar
conditions in the atmosphere

• Base case experiments should reflect range of atmospheric
chemical conditions relevant to VOC reactivity.
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Choice of Base Case for
Incremental Reactivity Experiments

• Major atmospheric chemical condition relevant to VOC reactivity
is relative availability of NOx (relative ROG/NOx ratio). E.g.,

• Different aspects of the mechanism affect O3 impacts under
different NOx conditions
• High NOx experiments: test effects of VOCs on radical levels
• Low NOx experiments: test effects of VOCs on NOx removal

• Therefore, minimum of two base case experiments is needed

High

Moderate

Low

ROG/NOx

Most sensitive to NOxLowLow NOx

Optimum conditions for O3ModerateMOIR

Most sensitive to VOCsHighMIR

O3 sensitivityRelative NOxCondition
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Base Case Experiments
used in Coatings Reactivity Studies

• NOx levels of 25-30 ppb, based on CARB recommendations of
range of NOx that represents urban conditions in California

• 8- component ROG surrogate (used previously) employed to
represent major classes of VOCS present in ambient air
• Formaldehyde removed in later experiments and other

VOCs increased by 10% to simplify experiments
• Calculated to give essentially the same reactivity results as

base ROG mixture used to calculated reactivity scales.

½ MOIR NOx levels. NOx relatively low but
not so low that O3 insensitive to VOCs.

1.025MOIR/2

ROG levels calculated to yield MIR
conditions

0.530MIR

DiscussionROG
(ppmC)

NOx
(ppb)Experiment
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SAPRC-99 Model simulations of representative experiments
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Dependence of SAPRC-99 Underprediction
Bias on Relative ROG/NOx Levels
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Aromatic Mechanism Adjustments
to Improve Base Case Simulations

• Biases in model simulations of base case experiment attributed
to aromatics mechanism. So far, no aromatic mechanism found
that gives satisfactory fits all the available chamber data.

• Base case biases may cause biases in simulations of reactivity.

• To investigate this, mechanisms for aromatics in the base ROG
was adjusted to remove biases in base case simulations.
• Yields of aromatic fragmentation products AFG2 and AFG3

for toluene and m-xylene increased by factor of 1.75
• Rate of reaction of AFG1 with O3 increased by factor of 10

• Comparing simulations with and without this adjustment shows
effects base mechanism biases on reactivity predictions

• Not a “better” aromatics mechanism because this adjustment
makes fits to  single aromatic – NOx experiments worse.
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Effects of Mechanism Adjustments on
Simulations of Representative Experiments
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Effect of Aromatic Mechanism Adjustment
on Base Case Model Underprediction Bias
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VOCs Identified in the 2001 CARB Survey
of Water-Based Architectural Coatings
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Results of a Texanol® Injection Test
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Reactivity Data for Texanol®
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Comparison of Chamber and Ambient
Reactivity Calculation For Texanol®

"MIR" Incremental Reactivity 
Chamber experiment

"Averaged Conditions" MIR
Box Model Airshed Scenario

Both Cases: Moles Texanol added = 5% of moles Carbon in Base Case ROGs
Both simulations predict measurable effect of Texanol on OH radical levels.
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Reactivity Data for Butyl Carbitol
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Reactivity Data for Propylene Glycol
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Reactivity Data for Ethylene Glycol
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Glycol Decay Rates in Reactivity Runs:
Comparison with Literature k(OH) Values

Propylene Glycol vs m-Xylene Ethylene Glycol vs. m-Xylene
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Glycol Reactivity Data with a
Non-Aromatic Surrogate
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Development of a
Benzyl Alcohol Mechanism

• Reaction with OH radicals assumed to dominate.

• Single measurement of k(OH) given by Atkinson (1989) used

• Reaction at -CH2OH, forming Benzaldehyde + HO2 assumed to
occur 30% of the time, to fit benzaldehyde data in experiments

• Mechanism of OH addition to ring based on that used for
toluene

• Overall nitrate yield adjusted to be 5% to give best fits to data

• Benzaldehyde – NOx experiments also carried out to provide
additional basis for developing adjusted mechanism.



W. P. L. Carter      04/11/2005 Atmospheric Impacts of Coatings VOCs 26

Reactivity Data for Benzyl Alcohol
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Simulations of Representative
Benzaldehyde – NOx Experiments
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Summary of Mechanism Evaluation Results
for Water-Based Coatings VOCs

2.9Previous mechanism simulated data
satisfactorily. Not changed.

Butyl Carbitol

4.9No previous mechanism. Parameter-
ized mechanism adjusted to fit data.

Benzyl Alcohol

≥ 3.4Mechanism may underpredict ozone
impact, but uncertain whether change
is appropriate. Not changed.

Ethylene Glycol

≥ 2.7Mechanism may underpredict ozone
impact, but uncertain whether change
is appropriate. Not changed.

Propylene Glycol

0.88Previous mechanisms simulated data
satisfactorily. Not changed.

Texanol® isomers

MIR *
(mass basis)

Mechanism Performance and
ModificationsCompound

* MIR of base ROG (Ambient Mixture) = 3.7 gm O3 / gm VOC
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Representative Hydrocarbon Mixtures
Chosen For Reactivity Experiments

11-9-12Dearomatized Mixed
Alkanes

ASTM-1C

60.2%8-9VMP NaphthaVMP-NAPH

AROM-100

ASTM-1A

ASTM-1B

ASTM-3C1

Designation

12-Mostly 11Synthetic isoparrafinic
alkane mixture

22

15

14

CARB
Bin No.

Aromatic
Content

Carbon No.
Range

Description

100%Mostly 9Aromatic 100

19%9-12Regular Mineral Spirits

6%9-12Reduced Aromatics
Mineral Spirits
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Chemical Type Distributions
for Hydrocarbon Mixtures Studied

n-Alkane Br-Alkane Cyc-Alkane Aromatic

Aromatic 100ASTM-1AASTM-1B

ASTM-3C1ASTM-1CVMP Naphtha
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Reactivity Data for Dearomatized Mixed
Alkanes (ASTM-1C)
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Comparison of Chamber and Ambient
Reactivity Calculation for ASTM-1C

"MIR" Incremental Reactivity 
Chamber experiment

"Averaged Conditions" MIR
Box Model Airshed Scenario

Moles Carbon Mixture added = 25% of Moles Carbon in Base Case ROGs
Both simulations predict measurable effect of Mixture on OH radical levels.
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Reactivity Data for Aromatic 100
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Results for Other Petroleum Distillates
Change in ∆([O3]-[NO]) (ppm)
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Reactivity data for Synthetic
Hydrocarbon Mixture (ASTM-3C1)
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Assessment of Model Performance and
MIRs for the Hydrocarbon Solvents Studied
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PM Measurements

• Number densities of particles in 71 size ranges (28 - 730 nm)
measured using a a Scanning Electrical Mobility Spectrometer

• Data used to compute total particle number and volume
(measured as mass assuming density of H2O) per unit volume

• PM alternately sampled from each of the two reactors, switching
every 10 minutes (15.3 data points/hour/reactor)

• PM measurements made during most incremental reactivity
experiments for the coatings projects

• Background PM measurements made in experiments where PM
precursors not expected

• Seed aerosol not used in most experiments



W. P. L. Carter      04/11/2005 Atmospheric Impacts of Coatings VOCs 38

PM Data in Base Case Experiment

EPA233:  MOIR/2 Surrogate (Side Equivalency Test)
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PM Volume in Background Experiments
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Effects of Texanol® and the Glycols
on 5-Hour PM Volume
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Effects of Hydrocarbon Solvents on
5 Hour PM Volume
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Effects of Benzyl Alcohol and Butyl Carbitol
on 5-Hour PM Volume
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Summary of PM Volume Reactivity Results
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Summary of PM Measurement Results

• Background PM formation in chamber is up to ~1 µg/m3,
depending on reactor employed
• Probably due to contaminant reacting with OH, forming SOA
• Reason for higher background in “A” reactor unknown

• Secondary PM formation from ethylene and propylene glycol,
Texanol®, and the ASTM-3C1 synthetic mixture negligible.

• Small but measurable PM from petroleum distillate solvents. Not
simply related to aromatic content.

• Highest secondary PM from butyl carbitol and (especially)
benzyl alcohol

• Chamber effects PM model needed before PM data can be
used for quantitative mechanism evaluation
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Glycol Availability Screening Experiments
Objective

• Determine if added aerosols affect gas-phase consumption
rates and reactivities of glycols

Experiments Carried Out

• Dark decay experiments with ethylene and propylene glycol with
10 µg/m3 (NH4)2SO4 seed aerosol at 35% RH.

• ROG – NOx ambient surrogate irradiation with added propylene
glycol with  9 µg/m3 (NH4)2SO4 seed aerosol at 25% RH.

• ROG – NOx ambient surrogate irradiation with added ethylene
glycol with 7 µg/m3 NH4HSO4 seed aerosol at 30% RH.

 Note: Aerosol and humidity added to only one reactor because
of limited aerosol generation and humidification capacity.
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Results of Glycol Dark Decay Experiment
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Glycol Decay Rates in Availability Runs:
Comparison with Literature k(OH) Values

Propylene Glycol vs m-Xylene Ethylene Glycol vs. m-Xylene
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Glycol Availability Experiments:
Preliminary Conclusions

• No clear effect on glycol consumption rate or ozone reactivity for
humidity up to 35% and (NH4)2SO4 or NH4HSO4 seed aerosol up
to 10 µg/m3.

• But there still may be a measurable effect at higher humidity or
aerosol concentration, with a different type of aerosol

• Upgrades are being made to the chamber facility to facilitate
experiments at higher RH, aerosol levels.

• But experiments that measure increases in aerosol mass when
exposed to gas-phase VOCs may give a more sensitive
measure of VOC uptake on aerosols
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Evaluation of Methods to Estimate
Complex Hydrocarbon Solvent Reactivities

• MIRs for complex hydrocarbon solvents currently estimated
using a “binning” procedure based on correlations between
carbon numbers, type distributions, and MIRs

• Bin MIRs evaluated by comparison with MIRs calculated using
detailed compositional data for a wide variety of solvents
• Agree within ±25% except for bins with light cycloalkanes

• An alternative “spreadsheet” method developed for deriving
estimated compositions for solvents with limited data
• Separates compositional and reactivity estimates. Permits

derivations in reactivities for other scales besides MIR.
• Agrees with calculations using detailed compositional data

within ±10% in most cases
• Can be used as a basis for updating hydrocarbon bin

reactivities when reactivity scale is changed or updated.
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Comparison of CARB Bin MIRs with
MIRs Calculated Using Compositional Data
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Comparison of
Spreadsheet Estimated MIRs with

MIRs Calculated Using Compositional Data
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Further Development of a
Direct Reactivity Measurement Method

• VOCs affect O3 directly through their own reactions or indirectly
through the effects of their reactions on radicals and NOx.

• A measurement of direct reactivity would reduce uncertainties in
mechanism evaluations and provide a reactivity screening tool

• A direct reactivity measurement method was developed in a
previous CARB project but was not suitable for coatings VOCs
• Required GC analysis, so not suitable for complex mixtures

or low volatility compounds

• For this project, a total carbon measurement was interfaced to
the system to eliminate the need for GC analysis.

• Problems encountered. Absolute direct results not consistent
with model predictions; but better agreement with relative results

• Resources for this task exhausted before it could be completed.
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Direct Reactivity Measurements
Relative to n-Octane
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Overall Conclusions of Chamber Studies
• Chamber data for Texanol®, butyl carbitol, and primarily alkane

petroleum distillates are consistent with SAPRC-99 predictions.

• Chamber data for Aromatics-100 consistent with SAPRC-99 for
MIR conditions, but O3 inhibition at low NOx underpredicted.

• Reactivities of at least some synthetic hydrocarbon mixtures
may be underpredicted by up to a factor of 2.

• Glycol reactivities underpredicted by ~30% in some experiments,
but unclear whether adjustments are appropriate.

• New mechanism developed for benzyl alcohol that simulates
chamber data about as well as mechanisms for other aromatics

• Relative secondary PM impacts: benzyl alcohol >> butyl carbitol
> petroleum distillates. No measurable PM impacts for others.

• No evidence that humidity and aerosol affects glycol availability
at the relatively low aerosol loadings and humidities examined
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Recommendations
• Aromatics mechanisms need to be improved to further reduce

uncertainties in reactivity assessments (e.g., glycols)

• Extrapolation of current mechanisms to higher aromatics, such
as Aromatics 200, still highly uncertain

• Direct reactivity measurements needed to reduce uncertainties
for some VOCs, particularly mixtures of branched alkanes.

• A modified base case experiment that gives better correlations
between chamber and atmospheric reactivity would be useful

• No compelling need to change current bin assignments, except
perhaps for those with light cycloalkanes and synthetic mixtures.
But new procedure will be needed when reactivity scale updated

• Well-characterized environmental chamber data needed to
develop predictive secondary PM models. Work needed on
background PM characterization in chambers
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